Skip to main content
Log in

Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Crop domestication and selective breeding have altered plant defense mechanisms, influencing insect-plant interactions. A reduction in plant resistance/tolerance against herbivory is generally expected in domesticated species, however, limited efforts have been made to compare inducibility of plant defenses between wild and domesticated genotypes. In the present study, the inducibility of several plant defense mechanisms (e.g. defensive chemicals, trichomes, plant volatiles) were investigated, and the performance and preference of the herbivore Helicoverpa zea were measured in three different tomato genotypes; a) wild tomato, Solanum pimpinellifolium L. (accession LA 2093), b) cherry tomato, S. lycopersicum L. var. cerasiforme (accession Matts Wild Cherry), and c) cultivated tomato, S. lycopersicum L. var. Better Boy). Enhanced inducibility of defensive chemicals, trichomes, and plant volatiles in the cultivated tomato, and a higher level of constitutive plant resistance against herbivory in the wild genotype was observed. When comparing the responses of damaged vs. undamaged leaves, the percent reduction in larval growth was higher on damaged leaves from cultivated tomato, suggesting a higher induced resistance compared to other two genotypes. While all tomato genotypes exhibited increased volatile organic compound (VOCs) emissions in response to herbivory, the cultivated variety responded with generally higher levels of VOCs. Differences in VOC patterns may have influenced the ovipositional preferences, as H. zea female moths significantly preferred laying eggs on the cultivated versus the wild tomato genotypes. Selection of traits during domestication and selective breeding could alter allocation of resources, where plants selected for higher yield performance would allocate resources to defense only when attacked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo FE, Peiffer M, Tan CW, Stanley BA, Stanley A, Wang J, Jones AG, Hoover K, Rosa C, Luthe D, Felton G (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant-Microbe Interact 30(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Afifi AAM, Ali FS, Shalaby EA, El-Saiedy ESM (2015) Enhancement of resistance in tomato plants using different compounds against the two-spotted spider mites Tetranychus. Res J Environ Sci 9(3):119–136

    Article  Google Scholar 

  • Agrawal, A. A. (1999). Induced plant defense: evolution of induction and adaptive phenotypic plasticity. Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. American Phytopathological Society Press, St. Paul, MN, 251-268

  • Agrawal AA (2000) Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81(7):1804–1813

    Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87(sp7):S132–S149

    Article  PubMed  Google Scholar 

  • Agrawal AA, Conner JK, Johnson MT, Wallsgrove R (2002) Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. Evolution 56(11):2206–2213

    Article  PubMed  Google Scholar 

  • Åhman I (2009) Breeding for inducible resistance against insects–applied plant breeding aspects. IOBC-WPRS Bulletin 44:121–130

    Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2(4):875–877

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi H, Foolad MR (2015) Characterization of early blight resistance in a recombinant inbred line population of tomato: II. Identification of QTLs and their co-localization with candidate resistance genes. Advanced Studies in Biology 7:149–168

    Article  Google Scholar 

  • Bas N, Mollema C, Lindhout P (1992) Resistance in Lycopersicon hirsutum f. glabratum to the greenhouse whitefly (Trialeurodes vaporariorum) increases with plant age. Euphytica 64(3):189–195

    Article  Google Scholar 

  • Bellota E, Medina RF, Bernal JS (2013) Physical leaf defenses–altered by Zea life-history evolution, domestication, and breeding–mediate oviposition preference of a specialist leafhopper. Entomologia Experimentalis et Applicata 149(2):185–195

    Article  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32(1):170–189

    Article  CAS  PubMed  Google Scholar 

  • Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21(10):1511–1530

    Article  CAS  PubMed  Google Scholar 

  • Bixenmann RJ, Coley PD, Weinhold A, Kursar TA (2016) High herbivore pressure favors constitutive over induced defense. Ecology and Evolution 6(17):6037–6049

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, van der Knaap E, Cañizares J (2015) Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16(1):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci 109(49):20124–20129

    Article  PubMed  PubMed Central  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol 31(9):2211–2216

    Article  CAS  PubMed  Google Scholar 

  • Brzozowski LJ, Mazourek M, Agrawal AA (2019) Mechanisms of resistance to insect herbivores in isolated breeding lineages of Cucurbita pepo. Journal of Chemical Ecology:1–13

  • Carter CD, Snyder JC (1985) Mite responses in relation to trichomes of Lycopersicon esculentum x L. hirsutum F2 hybrids. Euphytica 34(1):177–185

    Article  Google Scholar 

  • Carter CD, Gianfagna TJ, Sacalis JN (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J Agric Food Chem 37(5):1425–1428

    Article  CAS  Google Scholar 

  • Chaudhary B (2013) Plant domestication and resistance to herbivory. International Journal of Plant Genomics

  • Chen G, Klinkhamer PG, Escobar-Bravo R, Leiss KA (2018) Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: implications for thrips resistance. Plant Sci 276:87–98

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Damodaram KJP, Kempraj V, Aurade RM, Rajasekhar SB, Venkataramanappa RK, Nandagopal B, Verghese A (2014) Centuries of domestication has not impaired oviposition site-selection function in the silkmoth, Bombyx mori. Sci Rep 4:7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danner H, Desurmont GA, Cristescu SM, van Dam NM (2018) Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol 220(3):726–738

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira JR, de Resende JT, Maluf WR, Lucini T, de Lima Filho RB, de Lima IP, Nardi C (2018) Trichomes and Allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Front Plant Sci 9

  • Dellinger TA, Youngman RR, Laub CA, Brewster CC, Kuhar TP (2006) Yield and forage quality of glandular-haired alfalfa under alfalfa weevil (Coleoptera: Curculionidae) and potato leafhopper (Hemiptera: Cicadellidae) pest pressure in Virginia. J Econ Entomol 99(4):1235–1244

    Article  PubMed  Google Scholar 

  • Desurmont GA, Donoghue MJ, Clement WL, Agrawal AA (2011) Evolutionary history predicts plant defense against an invasive pest. Proc Natl Acad Sci 108(17):7070–7074

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916–919

    Article  CAS  PubMed  Google Scholar 

  • Dias DM, Resende JTV, Faria MV, Camargo LKP, Chagas RR, Lima IP (2013) Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm. Genet Mol Res 12(1):381–389

    Article  CAS  PubMed  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 32(1):3–37

    Article  CAS  Google Scholar 

  • Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R (2016) A jasmonate-inducible defense trait transferred from wild into cultivated tomato establishes increased whitefly resistance and reduced viral disease incidence. Front Plant Sci 7:1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar-Bravo R, Klinkhamer PG, Leiss KA (2017) Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant Cell Physiol 58(3):622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW, Gatehouse JA (1996) Antinutritive plant defence mechanisms. In: Antinutritive plant defence mechanisms, In Biology of the Insect Midgut (pp. 373–416). Springer, Dordrecht

    Chapter  Google Scholar 

  • Felton GW, Donato K, Del Vecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15(12):2667–2694

    Article  CAS  PubMed  Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Visser RG, Vosman B (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187(1):31–45

    Article  Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Mumm R, de Vos RC et al (2013) Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 126(6):1487–1501

    Article  CAS  PubMed  Google Scholar 

  • Fitt GP (1989) The ecology of Heliothis species in relation to agroecosystems. Annu Rev Entomol 34(1):17–53

    Article  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics

  • Foolad MR, Sullenberger MT, Ashrafi H (2015) Detached-leaflet evaluation of tomato germplasm for late blight resistance and its correspondence to field and greenhouse screenings. Plant Dis 99(5):718–722

    Article  PubMed  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156(2):145–169

    Article  CAS  PubMed  Google Scholar 

  • Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8(1):187–206

    Article  CAS  Google Scholar 

  • Gols R, Bukovinszky T, Van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34(2):132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonda I, Ashrafi H, Lyon DA, Strickler SR, Hulse-Kemp AM, Ma Q et al (2018) Sequencing-based bin map construction of a tomato mapping population, facilitating high-resolution quantitative trait loci. Detection, The Plant Genome

    Google Scholar 

  • Haak DC, Kostyun JL, Moyle LC (2014) Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. In: Merging ecology and genomics to dissect diversity in wild tomatoes and their relatives, In Ecological Genomics (pp. 273–298). Springer, Dordrecht

    Chapter  Google Scholar 

  • Hardwick DF (1965) The corn earworm complex. The Memoirs of the Entomological Society of Canada 97(S40):5–247

    Article  Google Scholar 

  • Harvey JA, van Dam NM, Raaijmakers CE, Bullock JM, Gols R (2011) Tri-trophic effects of inter-and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166(2):421–431

    Article  PubMed  Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci 98(3):1083–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helms AM, Ray S, Matulis NL, Kuzemchak MC, Grisales W, Tooker JF, Ali JG (2019) Chemical cues linked to risk: cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct Ecol 33:798–808

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67(3):283–335

    Article  Google Scholar 

  • Horgan FG, Quiring DT, Lagnaoui A, Pelletier Y (2009) Effects of altitude of origin on trichome-mediated anti-herbivore resistance in wild Andean potatoes. Flora-Morphology, Distribution, Functional Ecology of Plants 204(1):49–62

    Article  Google Scholar 

  • Ilahy R, Hdider C, Tlili I (2009) Bioactive compounds and antioxidant activity of tomato high-lycopene content advanced breeding lines. The African Journal of Plant Science and Biotechnology 3(SI1):1–6

    Google Scholar 

  • Kanayama, Y. (2017). Sugar metabolism and fruit development in the tomato. The Horticulture Journal, OKD-IR01

  • Kang, J. H., Liu, G., Shi, F., Jones, A. D., Beaudry, R. M., & Howe, G. A. (2010). The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiology, pp-110

  • Kaplan I, Dively GP, Denno RF (2009) The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecol Appl 19(4):864–872

    Article  PubMed  Google Scholar 

  • Karban R (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25(2):339–347

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University Chicago Press, Chicago, pp 33–38. https://doi.org/10.7208/chicago/9780226424972.001.0001

    Book  Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20(1):331–348

    Article  Google Scholar 

  • Kariyat RR, Hardison SB, Ryan AB, Stephenson AG, De Moraes CM, Mescher MC (2018) Leaf trichomes affect caterpillar feeding in an instar-specific manner. Communicative & integrative biology 11(3):1–6

    Article  Google Scholar 

  • Kariyat RR, Mauck KE, De Moraes CM, Stephenson AG, Mescher MC (2012) Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.). Ecol Lett 15(4):301–309

    Article  PubMed  Google Scholar 

  • Kempel A, Schädler M, Chrobock T, Fischer M, van Kleunen M (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci 108(14):5685–5689

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53(1):299–328

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Felton GW (2013) Priming of antiherbivore defensive responses in plants. Insect Science 20(3):273–285

    Article  CAS  PubMed  Google Scholar 

  • Knapp, S., & Peralta, I. E. (2016). The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives in the tomato genome (pp. 7–21). Springer, Berlin, Heidelberg

  • Ladizinsky G (1998) How many tough-rachis mutants gave rise to domesticated barley? Genet Resour Crop Evol 45(5):411–414

    Article  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175(1):176–184

    Article  PubMed  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):5–6

    Article  Google Scholar 

  • Li X, Garvey M, Kaplan I, Li B, Carrillo J (2018) Domestication of tomato has reduced the attraction of herbivore natural enemies to pest-damaged plants. Agric For Entomol 20(3):390–401

    Article  Google Scholar 

  • Li Y, Zhong S, Qin Y, Zhang S, Gao Z, Dang Z, Pan W (2014) Identification of plant chemicals attracting and repelling whiteflies. Arthropod Plant Interact 8(3):183–190

    Article  Google Scholar 

  • Lima IP, Resende JT, Oliveira JR, Faria MV, Dias DM, Resende NC (2016) Selection of tomato genotypes for processing with high zingiberene content, resistant to pests. Hortic Bras 34(3):387–391

    Article  Google Scholar 

  • Lucini T, Faria MV, Rohde C, Resende JTV, de Oliveira JRF (2015) Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod Plant Interact 9(1):45–53

    Article  Google Scholar 

  • Maluf WR, Campos GA, das Graças Cardoso M (2001) Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121(1):73–80

    Article  Google Scholar 

  • McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR (2011) Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol 214(21):3672–3677

    Article  CAS  PubMed  Google Scholar 

  • McDaniel T, Tosh CR, Gatehouse AM, George D, Robson M, Brogan B (2016) Novel resistance mechanisms of a wild tomato against the glasshouse whitefly. Agron Sustain Dev 36(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196(1):29–48

    Article  PubMed  Google Scholar 

  • Milla R, Osborne CP, Turcotte MM, Violle C (2015) Plant domestication through an ecological lens. Trends Ecol Evol 30(8):463–469

    Article  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) Effect of different restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theor Appl Genet 80(3):385–389

    Article  CAS  PubMed  Google Scholar 

  • Minitab (Version 18) [Software] 2018. Available from: http://www.minitab.com/en-US/products/minitab/default.aspx. Accessed 28 June 2018

  • Mirnezhad M, Romero-González RR, Leiss KA, Choi YH, Verpoorte R, Klinkhamer PG (2010) Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 21(1):110–117

    Article  CAS  Google Scholar 

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79(2):229–241

    Article  CAS  Google Scholar 

  • Moreira X, Abdala-Roberts L, Gols R, Francisco M (2018) Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci Rep 8(1):12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121(2):325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Paudel S, Rajotte EG, Felton GW (2014) Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod Plant Interact 8(6):539–545

    Article  Google Scholar 

  • Peiffer M, Felton GW (2009) Do caterpillars secrete “oral secretions”? J Chem Ecol 35(3):326–335

    Article  CAS  PubMed  Google Scholar 

  • Peiffer M, Tooker JF, Luthe DS, Felton GW (2009) Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol 184(3):644–656

    Article  CAS  PubMed  Google Scholar 

  • Peralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic botany monographs, 84

  • R Core Team (2017) R: a language and environment for statistical computing. https://www.R-project.org/. Accessed 15 July 2019

  • Raghava T, Puja R, Rajendra H, Karunakara AC, Anil K (2009) Effect of insect herbivory on the volatile profile of tomato cultivars. Karnataka Journal of Agricultural Sciences 22(5):1023–1028

    Google Scholar 

  • Ranc N, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC plant biology 8(1):130

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z, Mescher MC, Frost CJ (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J Exp Bot 62(8):2633–2644

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal JP, Dirzo R (1997) Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol Ecol 11(3):337–355

    Article  Google Scholar 

  • Rowen E, Kaplan I (2016) Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. New Phytol 210(1):284–294

    Article  CAS  PubMed  Google Scholar 

  • Shlichta JG, Glauser G, Benrey B (2014) Variation in cyanogenic glycosides across populations of wild lima beans (Phaseolus lunatus) has no apparent effect on bruchid beetle performance. J Chem Ecol 40(5):468–475

    Article  CAS  PubMed  Google Scholar 

  • Silva DB, Bueno VH, Van Loon JJ, Peñaflor MFG, Bento JMS, Van Lenteren JC (2018) Attraction of three Mirid predators to tomato infested by both the tomato Leaf Mining moth Tuta absoluta and the whitefly Bemisia tabaci. J Chem Ecol 44(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106(6):927

    Article  CAS  PubMed  Google Scholar 

  • Spyropoulou EA, Haring MA, Schuurink RC (2014) Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Mol Biol 84(3):345–357

    Article  CAS  PubMed  Google Scholar 

  • Strapasson P, Pinto-Zevallos DM, Paudel S, Rajotte EG, Felton GW, Zarbin PH (2014) Enhancing plant resistance at the seed stage: low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J Chem Ecol 40(10):1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Tamiru A, Bruce TJ, Woodcock CM, Caulfield JC, Midega CA, Ogol CK et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14(11):1075–1083

    Article  PubMed  Google Scholar 

  • Tan, C. W., Peiffer, M., Hoover, K., Rosa, C., Acevedo, F. E., & Felton, G. W. (2018). Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity Proceedings of the National Academy of Sciences, 201717934

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236(4):1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Trapero C, Wilson IW, Stiller WN, Wilson LJ (2016) Enhancing integrated pest management in GM cotton systems using host plant resistance. Front Plant Sci 7:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133(3):1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcotte MM, Turley NE, Johnson MT (2014) The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol 204(3):671–681

    Article  PubMed  Google Scholar 

  • Turlings TC, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    Article  CAS  PubMed  Google Scholar 

  • Vu V (2011) Singular vectors under random perturbation. Random Struct Algoritm 39(4):526–538

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19(2):195–216

    CAS  PubMed  Google Scholar 

  • Whitehead SR, Turcotte MM, Poveda K (2017) Domestication impacts on plant–herbivore interactions: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1712):20160034

    Article  Google Scholar 

  • Xiao K, Mao X, Lin Y, Xu H, Zhu Y, Cai Q et al (2017) Trichome, a functional diversity phenotype in plant. Mol Biol 6:183

    Google Scholar 

  • Zarrad K, Chaieb I, Ben H, Bouslama T, Laarif A (2017) Chemical composition and insecticidal effects of Citrus aurantium of essential oil and its powdery formulation against Tuta absoluta. Tunis J Plant Prot 12(Special Issue):83–94

    Google Scholar 

  • Zuriaga E, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56(5):663–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michelle Peiffer and Ching-Wen Tan for their continuous assistance in carrying out the study. This research was partially supported by grants from the Integrated Pest Management Innovation Lab (IPM IL), United States Agency for International Development (USAID) Agreement No. AID-OAA-L-15-00001 and United States Department of Agriculture (AFRI 2017-67013-26596; National Science Foundation (IOS-1645548) and Hatch Project Grant (PEN04576)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Felton.

Electronic supplementary material

ESM 1

(DOCX 3728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, S., Lin, PA., Foolad, M.R. et al. Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. J Chem Ecol 45, 693–707 (2019). https://doi.org/10.1007/s10886-019-01090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-019-01090-4

Keywords

Navigation