Skip to main content

Advertisement

Log in

Estimation of age in unidentified patients via chest radiography using convolutional neural network regression

  • Original Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Purpose

Patient age has important clinical utility for refining a differential diagnosis in radiology. Here, we evaluate the potential for convolutional neural network models to predict patient age based on anterior-posterior chest radiographs for instances where patients may present for emergency services without the ability to provide this identifying information.

Methods

We used the CheXpert dataset of 224,316 chest radiographs from 65,240 patients to train CNN regression models with ResNet50 and DenseNet121 architectures for prediction of patient age based on anterior-posterior (AP) view chest radiographs. We evaluate these models on both the CheXpert validation dataset and a local hospital case in which a patient initially presented for emergency services intubated and without identification.

Results

Mean absolute error (MAE) for our ResNet50 model on the CheXpert dataset is 4.94 years for predicting patient age based on AP chest radiographs. MAE for our DenseNet121 model is 4.69 years. Both models have a correlation coefficient between true patient ages and predicted ages of 0.944. Wilcoxon rank-sum comparison between the two model architectures shows no significant difference (p = 0.33), but both show improvement over a baseline demographic-driven estimation (p < 0.001).

Conclusions

For circumstances in which patients present for healthcare services without readily accessible identification such as in the setting trauma or altered mental status, CNN regression models for age prediction have potential clinical utility for refining estimates related to this missing patient information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

MIMIC-CXR dataset is publicly available after credentialing at https://physionet.org/content/mimic-cxr/2.0.0/

References

  1. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. RadioGraphics 37:2113–2131. https://doi.org/10.1148/rg.2017170077

    Article  PubMed  Google Scholar 

  2. Irvin J, Rajpurkar P, Ko M et al CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison

  3. Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Mann RM (2019) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290:305–314. https://doi.org/10.1148/radiol.2018181371

    Article  PubMed  Google Scholar 

  4. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290:590–606. https://doi.org/10.1148/radiol.2018180547

    Article  PubMed  Google Scholar 

  5. Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30:427–441. https://doi.org/10.1007/s10278-017-9955-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51. https://doi.org/10.1016/j.media.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  7. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Am J Med Sci 238:393. https://doi.org/10.1097/00000441-195909000-00030

    Article  Google Scholar 

  8. Alshamrani K, Messina F, Offiah AC (2019) Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol 29:2910–2923. https://doi.org/10.1007/s00330-018-5792-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322. https://doi.org/10.1148/radiol.2017170236

    Article  PubMed  Google Scholar 

  10. Halabi SS, Prevedello LM, Kalpathy-Cramer J, Mamonov AB, Bilbily A, Cicero M, Pan I, Pereira LA, Sousa RT, Abdala N, Kitamura FC, Thodberg HH, Chen L, Shih G, Andriole K, Kohli MD, Erickson BJ, Flanders AE (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290:498–503. https://doi.org/10.1148/radiol.2018180736

    Article  PubMed  Google Scholar 

  11. Siegel EL (2019) What can we learn from the RSNA pediatric bone age machine learning challenge? Radiology 290:504–505. https://doi.org/10.1148/radiol.2018182657

    Article  PubMed  Google Scholar 

  12. Dallora AL, Berglund JS, Brogren M, Kvist O, Diaz Ruiz S, Dübbel A, Anderberg P (2019) Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. J Med Internet Res 21:e16291. https://doi.org/10.2196/16291

    Article  Google Scholar 

  13. Štern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403. https://doi.org/10.1109/JBHI.2018.2869606

    Article  PubMed  Google Scholar 

  14. Wong HJ, Sistrom CL, Benzer TI, Halpern EF, Morra DJ, Gazelle GS, Ferris TG, Weilburg JB (2013) Use of imaging in the emergency department: physicians have limited effect on variation. Radiology 268:779–789. https://doi.org/10.1148/radiol.13130972

    Article  PubMed  Google Scholar 

  15. Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G, Pellikka PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Kapa S (2019) Age and sex estimation using artificial intelligence from standard 12-Lead ECGs. Circ Arrhythm Electrophysiol 12:e007284. https://doi.org/10.1161/CIRCEP.119.007284

    Article  PubMed  Google Scholar 

  16. Langner T, Wikstrom J, Bjerner T et al (2019) Identifying morphological indicators of aging with neural networks on large-scale whole-body MRI. IEEE Trans Med Imaging 1–1. https://doi.org/10.1109/tmi.2019.2950092

  17. Hassner T, Harel S, Paz E, Roee Enbar † Effective face frontalization in unconstrained images

  18. Levi G, Hassner T Age and gender classification using convolutional neural networks

  19. Eidinger E, Enbar R, Hassner T (2013) Age and gender estimation of unfiltered faces

  20. Rajpurkar P, Irvin J, Zhu K et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. 3–9. https://doi.org/1711.05225

  21. Wang X, Peng Y, Lu L, et al ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases

  22. Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR: a large publicly available database of labeled chest radiographs

  23. Sabottke CF, Spieler BM (2020) The effect of image resolution on deep learning in radiography. Radiol Artif Intell 2:e190015. https://doi.org/10.1148/ryai.2019190015

    Article  Google Scholar 

  24. He K, Zhang X, Ren S, Sun J Deep residual learning for image recognition

  25. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ Densely connected convolutional networks

  26. Smith LN (2015) Cyclical learning rates for training neural networks

  27. Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1 -- learning rate, batch size, momentum, and weight decay

  28. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  29. Deng J, Dong W, Socher R, et al ImageNet: a large-scale hierarchical image database

  30. Devries T, Taylor GW Improved regularization of convolutional neural networks with cutout

  31. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15:e1002683. https://doi.org/10.1371/journal.pmed.1002683

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schwarz CG, Kremers WK, Therneau TM, Sharp RR, Gunter JL, Vemuri P, Arani A, Spychalla AJ, Kantarci K, Knopman DS, Petersen RC, Jack CR Jr (2019) Identification of anonymous MRI research participants with face-recognition software. N Engl J Med 381:1684–1686

    Article  Google Scholar 

Download references

Code availability

Code usable to recreate reported convolutional neural network models and figures is available upon request to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl F. Sabottke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

HIPAA compliant. Research was originally approved under IRB no. 10333 with further notification that this research met Institutional Review Board criteria for self-regulation as, per IRB policy, detailed review was not considered necessary for utilization of less than five local hospital cases or use of publicly available data.

Consent to participate

Requirement for consent waived by IRB.

Consent for publication

No consents for publication required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabottke, C.F., Breaux, M.A. & Spieler, B.M. Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. Emerg Radiol 27, 463–468 (2020). https://doi.org/10.1007/s10140-020-01782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-020-01782-5

Keywords

Navigation