

The Spectral NITF Implementation Profile (SNIP): A New Standard for Multispectral and Hyperspectral Imagery Datasets

Dr. Barbara A. Eckstein, NGA/Research (ctr) Senior Imagery Scientist 571-557-5526 Barbara.A.Eckstein.ctr@nga.mil

Ms. Jennifer P. Durdall, NGA/Research (gov) R&D Scientist 571-557-2815 Jennifer.P.Durdall@nga.mil

Joint Agency Commercial Imagery Evaluation (JACIE) Workshop 24 September 2019

Approved for public release, 19-999

LLIGENCE AGENCY

NATIONAL GEOSPATIAL

СE

BLUF: NGA/Research has built a new standard for MSI & HSI datasets

The "Spectral NITF Implementation Profile (SNIP)" improves MSI & HSI utility and quality compared to the 2011 tactical (i.e., airborne) HSI NITF implementation profile (NGA.IP.0006)

- SNIP uses the National Imagery Transmission Format (NITF) Standard (NITFS)
- Ratified 17 June 2019, in the NSG Standards Registry: <u>https://nsgreg.nga.mil/doc/view?i=4829</u>

SNIP Stakeholders & Interested Organizations

- SNIP Reviewers: NGA, NASIC, NGIC, JITC, LANL, ORNL, Army GEOINT Office, ...
- ▶ NATO Imagery Working Group (IMWG) also interested \rightarrow Very favorable response

SNIP Advances: Compared to 2011 airborne HSI NITF implementation profile (NGA.IP.0006)

- Space, ground, and airborne platforms
- MSI, HSI, and any spectroradiometric product (e.g., single band)
- Latest geopositioning metadata for electro-optical (EO) systems
 - Wide range of sensor designs, most accurate metadata for wide range of collection geometries
- > Per pixel metadata: e.g., spectral smile, dark level, radiometric gain and offset, smear, etc.
- Augmented illumination metadata: camera-to-target-to-sun angle, solar illumination amount, etc.

Low-cost integration & interoperability, plus high quality & utility, when MSI & HSI datasets conform to the SNIP

ATIONAL GEOSPATIAL

Topics

- National Imagery Transmission Format (NITF) Standard Overview
- Genesis of the Spectral NITF Implementation Profile (SNIP)
- SNIP Version 1.0 Scope
- SNIP Design
- Prototype Datasets, aka "Reference Implementation Products" (RIPs)
- Next Steps
- Systems Utilizing the SNIP
- Summary
- Points of Contact

Acronyms are defined in the Notes section of each slide

NITF Standard Overview

The NITF Standard (NITFS) is the principal imagery transmission format of the National System for Geospatial Intelligence (NSG)

First developed in 1980s and actively managed by the <u>NITFS Technical Board</u> (NTB) under the auspices of NGA's <u>Geospatial Intelligence Standards Working Group</u> (GWG)

National Security Agency (NSA)

Armed Services

National Geospatial-Intelligence Agency (NGA)

Intelligence elements of other agencies and the

The NSG is used by the Intelligence Community (IC), including

- Director of National Intelligence (DNI)
- Central Intelligence Agency (CIA)
- Defense Intelligence Agency (DIA)

The NITFS supports

- Commercial, civil, and DoD image sources
- Different sensor types, both still & motion imagery, including
 - Electro-optical (EO) sensors: panchromatic, multispectral, hyperspectral, and infrared
 - RADAR: Real (RAR) and synthetic aperture radar (SAR)
- Different sensor designs, including panoramic, pushbroom, whiskbroom, & framing
- Various sensor platforms, including ground, air, and satellite platforms

NGA

(since '16)

(late '16)

(Aug '17–Apr '19)

Genesis of the Spectral NITF Implementation Profile (SNIP)

Several advanced HSI & MSI systems are currently under development

NGA/Research (NGA/R) realized that a single HSI standard will reduce integration costs

NGA/R determined that the tactical HSI NITF standard (NGA.IP.0006) does not meet needs for advanced exploitation of future HSI systems

Work began on a new HSI standard

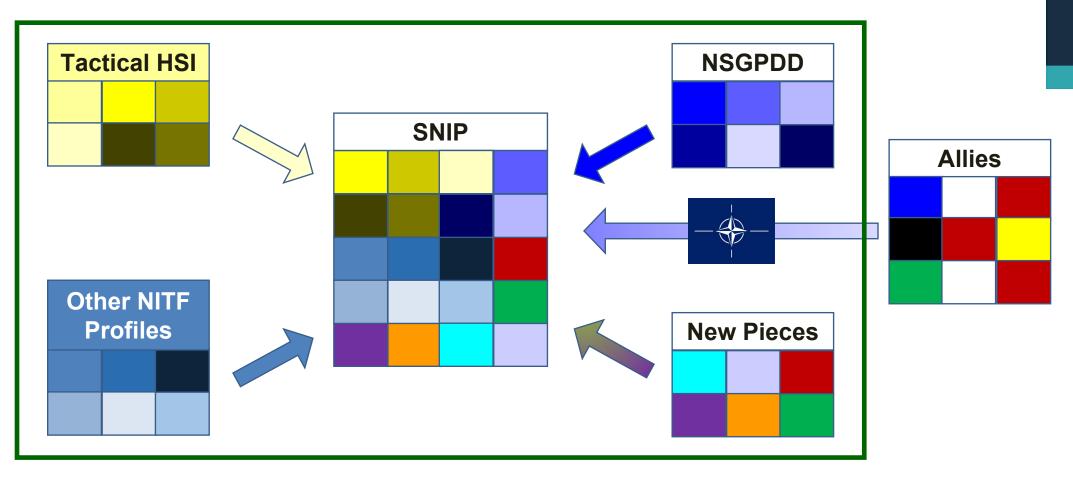
NGA/R decided to change scope to a single spectral standard (MSI, HSI, etc.)

- No general MSI NITF standard existed
- MSI & HSI dataset needs are very similar, so effort to add MSI to scope was relatively small

USAF funded Oak Ridge National Lab (ORNL) to create a spectral NITF standard (early '17)

Upon learning of NGA's SNIP task, ORNL agrees to partner with NGA on SNIP

Dr. Eckstein & Dr. Jason S. Smith wrote <u>SNIP v1.0 (NGA.STND.0072_1.0_SNIP)</u> (Sep '17–Jun '19)

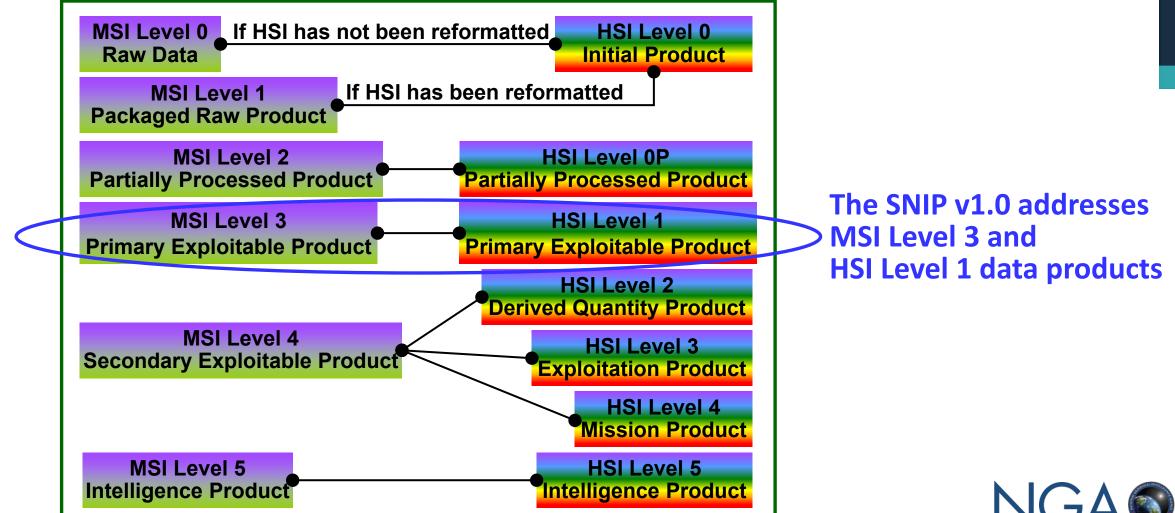

- In close partnership with other subject matter experts
- Also wrote new TREs (i.e., headers) for per-pixel metadata, dataset mates, and illumination conditions
- Included definitions of <u>NSG Spectral Data Product Levels</u> (NGA.SIG.0034_1.0_SPECTDL) (31 Oct '18)

The SNIP v1.0 and 3 new TREs completed & approved by the NTB (Feb '18–Jun '19)

SNIP DNA

The SNIP leverages existing standards as well as new additions to the standards compendium

Guiding Principle: Invent as little as possible



NSG Spectral Data Product Levels (NGA.SIG.0034_1.0_SPECTDL)

The SNIP utilizes spectral data product level definitions tailored to the NSG

Guiding Principle: Invent as little as possible

NITF Dataset Design

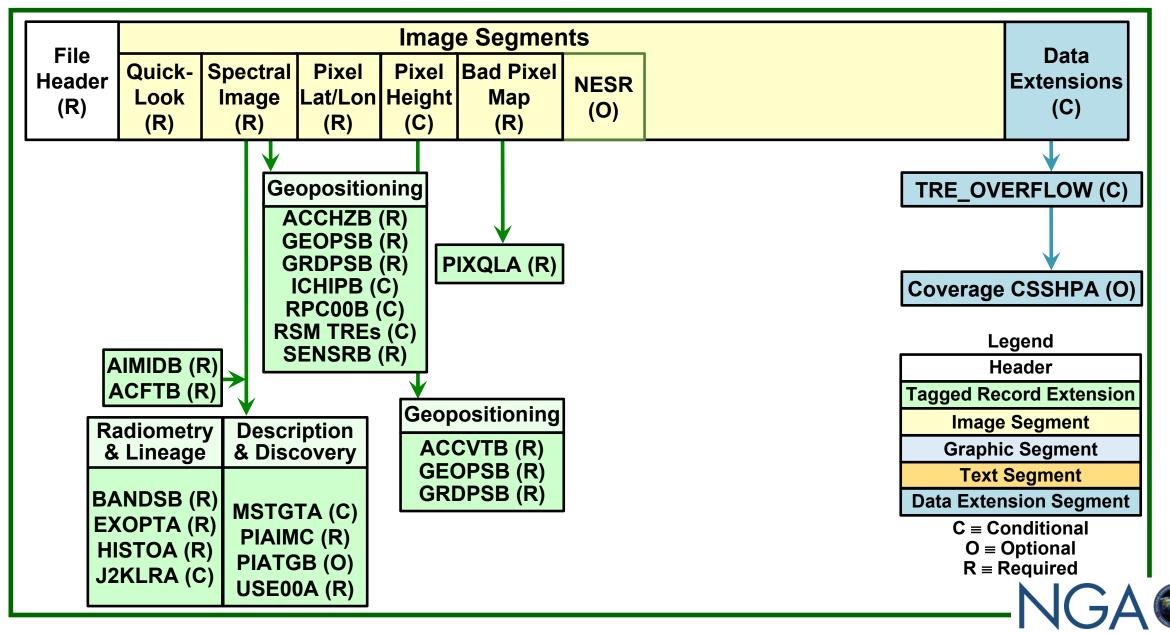
File Header (R)	Image Segment(s) (O)	Graphic Segment(s) (O)	Reserved Segment(s) (Omit)	Text Segment(s) (O)	Data Extension Segment(s)	Extension Segment(s)	O ≡ Optional R ≡ Required
TRE(s) (O)	TRE(s) (O)	TRE(s) (O)		TRE(s) (O)	(0)	(Omit)	

The NITF Standard (NITFS) consists of a file header and different "segment" types

Some segments may include "tagged record extensions" (TREs), i.e., metadata headers

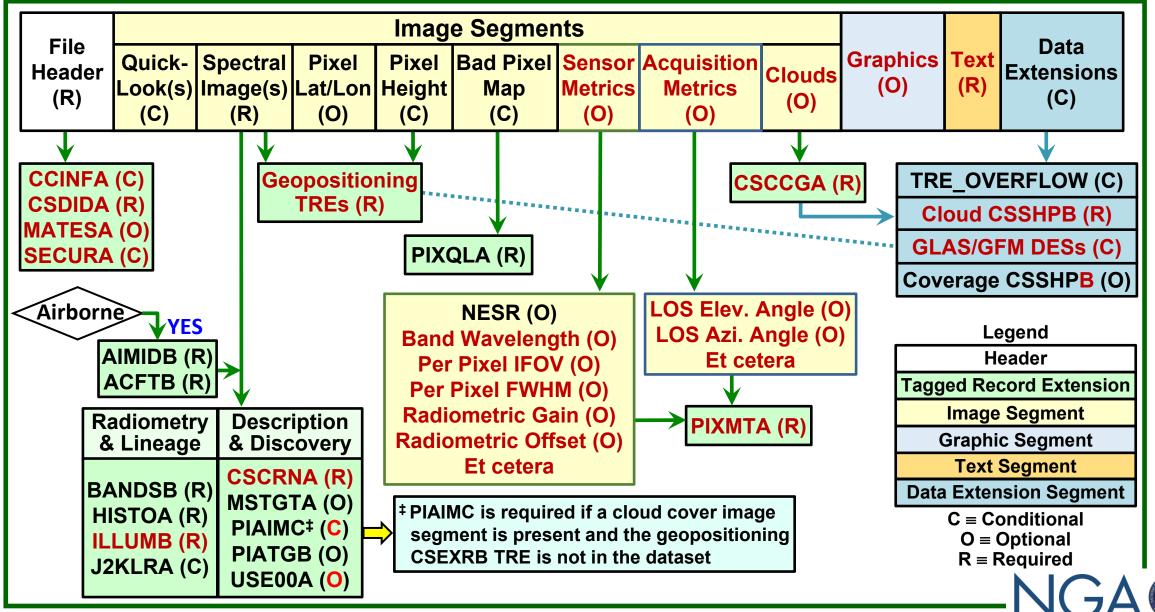
NITFS segment types must occur in a pre-defined order:

- 1. Image segments, i.e., rasters, of various types
 - Collected images, clouds, location, elevation, bad pixels, per-pixel metadata, wind, water current, barometric pressure, change detection, X-ray, magnetic resonance (MRI), etc.
- 2. Graphic segments: Annotation overlays to the image segments
- 3. Text segments: For storing text information
- 4. Data extension segments (DESs): For non-raster information

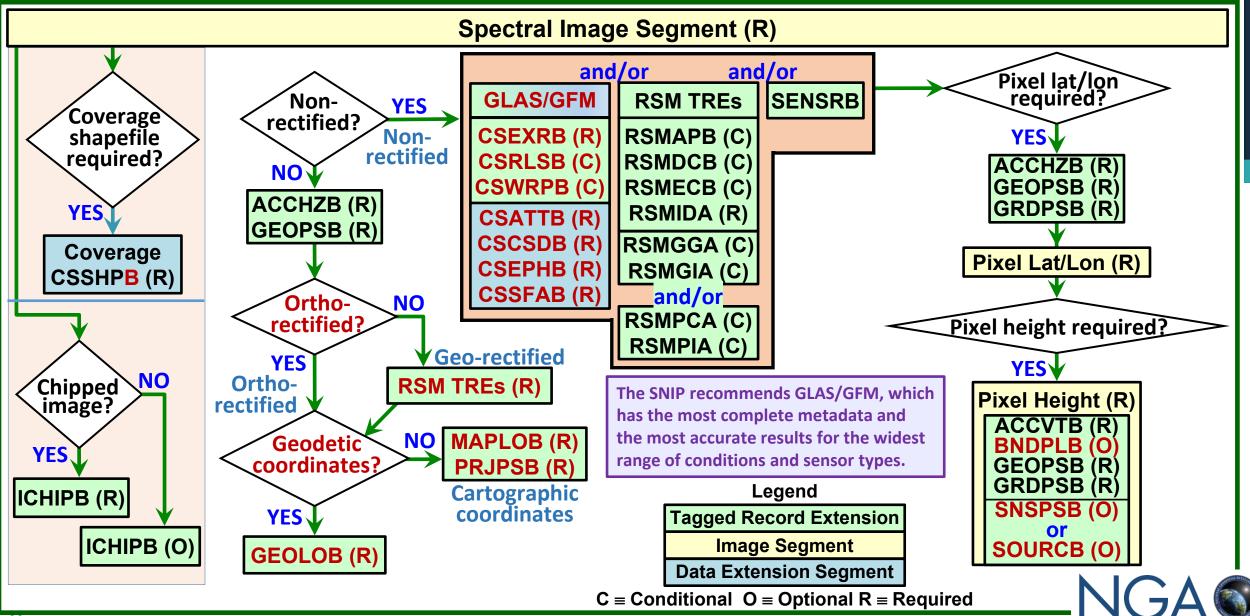

A valid NITF dataset need only include a single segment of any type

Not necessarily an image segment

Most of the NITFS uses fixed order, hard parsed field structures



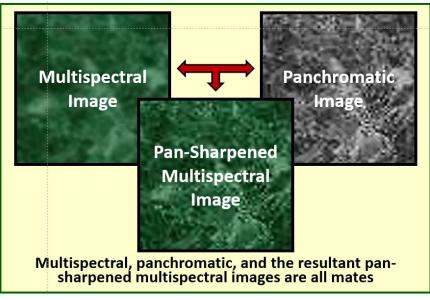
2011 Tactical (i.e., Airborne) HSI NITF Implementation Profile (NGA.IP.0006)

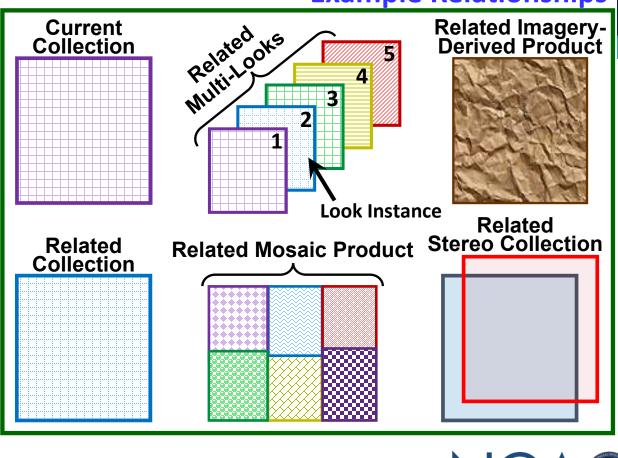


2019 SNIP Version 1.0 Design

Red: Additions/Changes to 2011 HSI NITF Profile

2019 SNIP v1.0 Geopositioning Options Red: Additions/Changes to 2011 HSI NITF Profile



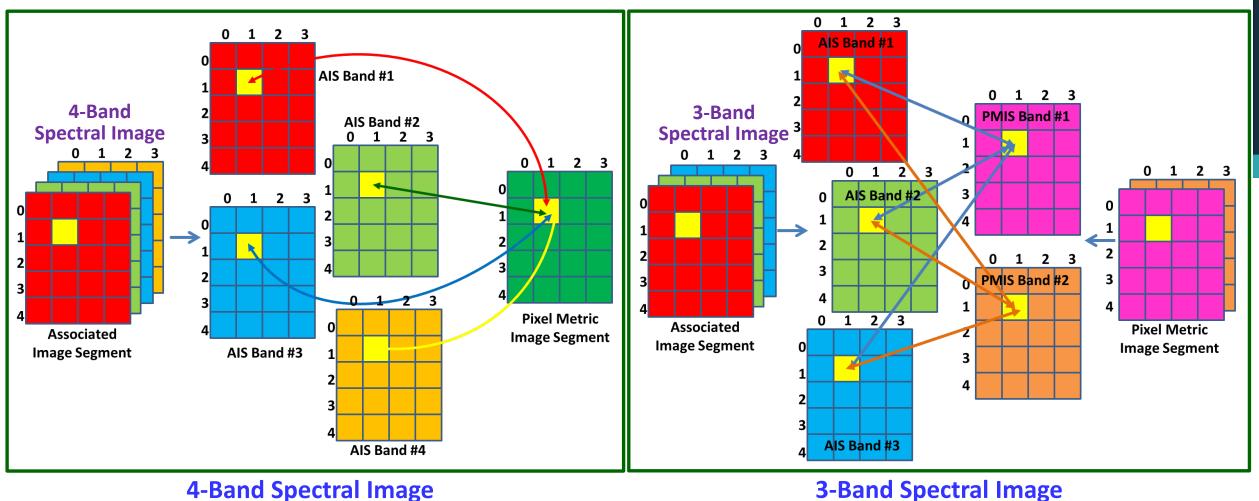

New Metadata Option: Image Mates \rightarrow MATESA TRE

Provides mates of the file in which the MATESA TRE is located, i.e., the "current file"

- The relationship of each mate to the current file is also provided
 - 33 total RELATIONSHIP values
 - New RELATIONSHIP values may be submitted to the NTB for approval
- Mates may be images or non-images
- Mate ID varies with mate type: image, URL, etc.

Ratified by the NTB on 1 Dec 2018

Example Relationships


New Metadata Option: Per-Pixel Metadata \rightarrow PIXMTA TRE

Per-pixel metadata: Pixel Metric Image Segment (PMIS) and PIXMTA TRE

- Metadata may be specified per band, and for each pixel or for a sparse grid of pixels
- Per-pixel metrics are organized by metric type
 - Spectroradiometric: Band wavelength, IFOV, FWHM, NESR, spectral smile, spectral keystone, etc.
 - View & illumination geometry: LOS azimuth & elevation angles, solar azimuth & elevation angles, etc.
 - Measurement quality: Dark level, saturation level, smear magnitude & direction, etc.
 - Image statistics: Row and column averages, row and column standard deviations
 - Miscellaneous: Equation coefficients
- PIXMTA TRE provides
 - Each metric's unit of measure (UoM)
 - Mapping between PMIS pixels and the associated image segment's pixels in [row, column, band]
 - Equation to convert stored PMIS pixel values to actual values, e.g., stored integers \rightarrow real numbers
- PMIS/PIXMTA specification was ratified by NTB on 23 May 2019

Per-Pixel Metadata: Examples of Relationships to Spectral Image

4-Band Spectral Image Single-Band Pixel Metric Image that applies to each Spectral Image Band

2-Band Pixel Metric Image with 2 Metrics that apply to

each Spectral Image Band

New Metadata Option: Illumination Conditions → ILLUMA & ILLUMB TREs

ILLUMA TRE was created around 2017 \rightarrow XML-encoded TRE

Provides solar, lunar, and artificial illumination in radiance (W m⁻² sr⁻¹)

The ILLUMB TRE was created in 2018 because more illumination metadata were needed

- > At the request of the user community, additional metadata were added to ILLUMA fields
 - Wavelength range of the illumination
 - Option to provide illumination in other radiometric quantities, e.g., spectral radiance (W m⁻² sr⁻¹ μm⁻¹)
 - When & where illumination conditions exist: date, time, location
 - If a sensor is present:
 - Sensor elevation & azimuth angles
 - \circ Latitude and longitude of solar and lunar glint
- Ability to specify multiple sets of illumination data: by wavelength ranges, times, & locations
- ▶ ILLUMB is a traditionally encoded TRE, i.e., fixed-length fields in a pre-defined order
- The ILLUMA/B TREs were ratified by the NTB on 23 May 2019

SNIP-Conformant Prototype Datasets, aka "Reference Implementation Products" (RIPs)

RIPs created to test the SNIP and its components

- ► And to test SNIP-conformant tools, Mensuration Services Program (MSP), etc
- RIP #1: April 2005 cloud-free HDF4 Hyperion HSI of Baghdad → conformed to SNIP v0.1
 - ▶ 172 band SWIR FPA: Quick-look, spectral, bad pixels, & 3 PMISs* (smile, FWHM, radiometric gain)
 - ▶ Non-rectified: GLAS TREs & DESs supporting MSP; two RSM TREs derived from GLAS
 - Includes BANDSB, CSCRNA, CSDIDA, HISTOA, ILLUMA*, MATESA*, PIXMTA*, and USE00A TRES
 - ► Interoperability tested against ENVI → Success

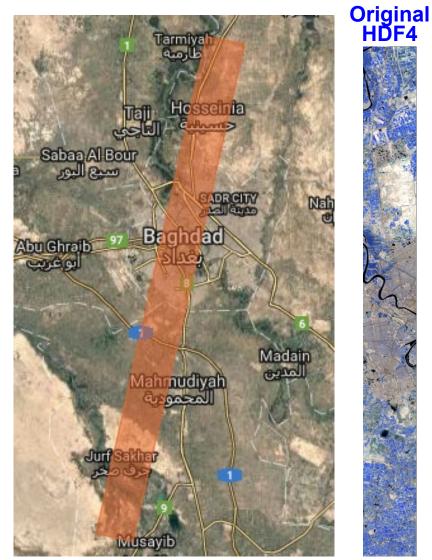
RIP generation and testing proved valuable to SNIP development and to tools, revealing

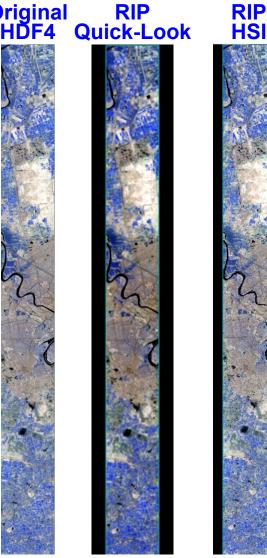
- ► Need for new types of image mates → MATESA TRE modified
- Older version of MSP (v1.5.0) does not handle multiple image segments well

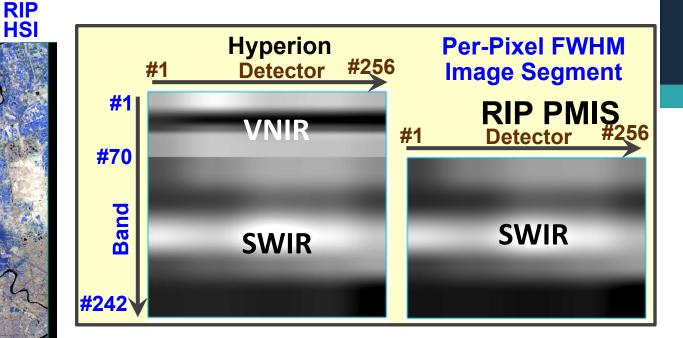
NGA/R has shared RIP #1 at least 23 times, including ...

- ▶ NGA groups, AFLCMC, LANL, ORNL, etc
- Contractors: Aerospace, BAE, Ball, L3Harris, Hexagon US Federal, Centauri (formerly IAI), UTAS
- Australian Dept of Defence, Australian GEOINT Office (AGO)

NGA/R has recently completed a Hyperion-derived RIP that conforms to SNIP v1.0


Using final versions of ILLUMB, MATESA, and PIXMTA TRES


RIPs are available upon request



Hyperion SNIP-Conformant Reference Implementation Product (RIP)

Hyperion scene ID EO1H1680372005097110PZ RIP file name: 07APR2005_Hyperion_331405N0442002E_SWIR172_001_L1R.ntf

Black background of RIP image segments results from the value of the FBKGC (file background color) field in RIP file header

Hyperion dataset courtesy of the U.S. Geological Survey

Next Steps: Enable More Advanced Spectral Analysis

Address more data product levels: HSI Levels 0 to 2; and MSI Levels 1 to 4

Create SNIP-v1.0-conformant RIP(s): Currently in work Improve existing metadata containers, including

- Augment [row, column] chipping to [row, column, band]
- Improve lineage metadata (HISTOA TRE)
 - Currently designed for <u>IDEX</u> (1991 to 2003) processing
- Add weather metadata

Create new NITF container for polynomials and tables

For example: spectral response function either as a shape or as a table of xa

Continue collaborating with NATO Allies and their NSIF/STANAG 4545 requirements

If resources permit: Add support for Color Management (CM) solutions per NGA Softcopy Image Processing Standard (SIPS)

ICC_PROFILE_SUPPORT_DES (may need to update structure)

Systems Utilizing the SNIP

Some HSI airborne platforms

USAF is looking to standardize MSI products from

- ▶ U-2 SYERS-2C
- Global Hawk MS-177

Exploitation Light Tables (ELTs) Utilizing the SNIP

ENVI: Spectral exploitation (L3Harris product)

MSP: Testing MSP's geopositioning and mensuration functions on SNIP-conformant RIPs

Summary

NGA/Research has created the Spectral NITF Implementation Profile (SNIP), a new MSI/HSI standard that improves utility, quality, and interoperability while reducing integration costs:

- Includes the first ever general MSI NITF implementation profile
- New content: Per-pixel metadata, illumination conditions, image and non-image mates
- Improved geopositioning for a wider range of systems and collection conditions
- ▶ Platform independent; applies to non-, geo-, and ortho-rectified data
- The SNIP is in the NSG Standards Registry: <u>https://nsgreg.nga.mil/doc/view?i=4829</u>

Several new MSI and HSI systems that provide data to the NSG are in the process of leveraging the SNIP

NGA/Research is creating SNIP-conformant Reference Implementation Products (RIPs)

RIPs are usually shareable upon request

NGA/Research is actively working to add more advanced capabilities to the SNIP

Spectral NITF Implementation Profile (SNIP) Points of Contact

<u>Government Lead:</u> Jennifer P. Durdall Research Directorate (R) National Geospatial-Intelligence Agency (NGA) 571-557-2815 Jennifer.P.Durdall@nga.mil

Mr. Jeffrey R. Stevens

NGA/R, Contractor POC for Community Engagement

- **571-557-6028**
- Jeffrey.R.Stevens.ctr@nga.mil (NGA)

Dr. Barbara Eckstein

NGA/R contractor, lead author of SNIP

- **571-557-5526**
- Barbara.A.Eckstein.ctr@nga.mil (NGA)
- Barbara.Eckstein@L3Harris.com

Dr. Jason S. Smith NGA/R contractor, SNIP co-author

- **585-269-7154**
- Jason.S.Smith@L3Harris.com

Approved for public release, 19-999

